列线图预测模型在骨质疏松症中研究进展
Research progress of column chart prediction model in osteoporosis
  
DOI:10.3969/j.issn.1006-7108.2025.09.020
中文关键词:  骨质疏松症  预测模型  列线图  模型评价
英文关键词:osteoporosis  prediction model  nomogram  model evaluations
基金项目:
作者单位
张成静 蒋成燕 遵义医科大学第三附属医院内分泌科贵州 遵义 563000 
摘要点击次数: 218
全文下载次数: 0
中文摘要:
      随着人口老龄化程度的不断加剧,骨质疏松症患者数量大幅增加,骨质疏松症的早期筛查和识别对其防治至关重要。但骨质疏松症症状隐匿,诊断工具运用局限,严重阻碍了骨质疏松症的早期筛查。近年来大量学者构建了一系列骨质疏松症列线图预测模型以期早期预测骨质疏松症的发生。因此本综述通过对各种骨质疏松症列线图预测模型的预测变量、建立过程及模型评价进行对比分析和总结,以期为骨质疏松症列线图预测模型的优化及临床应用提供经验。
英文摘要:
      With the intensification of population aging, the number of osteoporosis patients has increased significantly, making early screening and identification crucial for prevention and treatment. However, the insidious nature of osteoporosis symptoms and the limited application of diagnostic tools have severely hindered early screening efforts. In recent years, numerous researchers have developed various nomogram prediction models for osteoporosis to enable early prediction of its occurrence. This review comparatively analyzes and summarizes the predictive variables, development processes, and model evaluations of different osteoporosis nomogram prediction models, aiming to provide insights for optimizing these models and advancing their clinical applications.
查看全文  查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=FC9DA7BF2F842A3BAE24B54F70914FE64668D6133CFEA5DF043B27AE7F137DF1F700C533E3DFCA4658A9E5FFF6FC0C83B355424953BCC6C693CC104F6B8832BE821407B221C6F82B&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=527A01A248DACB72&jid=CA678592D11E309E8E3FB3B2BFE9BE1A&yid=E6A891D2134F30C0&aid=&vid=&iid=9CF7A0430CBB2DFD&sid=77586D59F496BF38&eid=22A8A39C6229FA42&fileno=20250920&flag=1&is_more=0"> var my_pcid="A9DB1C13C87CE289EA38239A9433C9DC"; var my_cid="527A01A248DACB72"; var my_jid="CA678592D11E309E8E3FB3B2BFE9BE1A"; var my_yid="E6A891D2134F30C0"; var my_aid="";