生物信息学助力骨质疏松精准研究
Bioinformatics empowering precision research in osteoporosis
  
DOI:10.3969/j.issn.1006-7108.2025.09.022
中文关键词:  骨质疏松  生物信息学  组学分析  机器学习
英文关键词:osteoporosis  bioinformatics  omics analysis  machine learning
基金项目:
作者单位
刘凤麟1 曲强2* 1. 北京大学生命科学学院北京 100871 2. 中国医学科学院北京协和医院基本外科 北京 100730 
摘要点击次数: 253
全文下载次数: 0
中文摘要:
      随着全球人口老龄化进程加速,骨质疏松症已成为威胁人类健康的重大慢性疾病,其病理机制的复杂性与诊疗精准性的不足对公共卫生体系构成严峻挑战。生物信息学为系统解析骨质疏松症的分子调控网络、推动精准诊疗提供了革新性工具。本文系统梳理了基因组学、转录组学、蛋白组学及机器学习等生物信息学技术在骨质疏松症研究中的应用进展:基因组学揭示了关键基因座和通路的遗传易感性;转录组学解析了骨代谢动态平衡的细胞异质性与调控机制;蛋白组学筛选出潜在治疗靶点;机器学习通过多维度数据建模实现了风险预测与影像学辅助分析。研究同时剖析了当前挑战,包括多组学数据异质性、因果验证滞后及临床转化瓶颈。未来需依托多模态AI模型整合“基因-环境-表型”跨尺度网络、结合大规模队列验证因果效应、推动真实世界证据应用等策略,推动骨质疏松症研究从经验治疗向精准干预转型,为老龄化社会骨骼健康提供保障。
英文摘要:
      With the acceleration of global population aging, osteoporosis has emerged as a significant chronic disease that poses a substantial threat to human health. The complexity of its pathological mechanisms, coupled with the inadequacies in precise diagnosis and treatment, presents formidable challenges for public health systems. Bioinformatics provides innovative tools for systematically elucidating the molecular regulatory networks of osteoporosis, thus facilitating the advancement of precision medicine. This paper systematically reviews the progress of bioinformatics techniques, including genomics, transcriptomics, proteomics, and machine learning, in osteoporosis research. Specifically, genomics has revealed genetic susceptibilities associated with key loci and pathways. Transcriptomics has clarified the cellular heterogeneity and regulatory mechanisms underlying the dynamic balance of bone metabolism. Proteomics has identified potential therapeutic targets. Machine learning has enabled risk prediction and imaging-assisted analysis through the modeling of multidimensional data. Furthermore, the study addresses current challenges, such as the heterogeneity of multi-omics data, delays in causal validation, and bottlenecks in clinical translation. Future efforts should focus on integrating multi-model AI models to synthesize "gene-environment-phenotype" cross-scale networks, validating causal effects with large-scale cohort studies, and promoting the application of real-world evidence. These strategies are essential for transitioning osteoporosis research from empirical treatment to precision intervention, ultimately ensuring skeletal health in an aging society.
查看全文  查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=9BD2908643065E6A6ED498A939046A3512FE52E21FD2FE6BB3C0AB8DDB372DBABA7898E2E124EA58DF31FC2C0E3C269707FB1CB8454C79B5D0EB9B0D96683C1B&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=527A01A248DACB72&jid=CA678592D11E309E8E3FB3B2BFE9BE1A&yid=E6A891D2134F30C0&aid=&vid=&iid=9CF7A0430CBB2DFD&sid=C429879D42743822&eid=E0D5583D4EFFC59B&fileno=20250922&flag=1&is_more=0"> var my_pcid="A9DB1C13C87CE289EA38239A9433C9DC"; var my_cid="527A01A248DACB72"; var my_jid="CA678592D11E309E8E3FB3B2BFE9BE1A"; var my_yid="E6A891D2134F30C0"; var my_aid="";